CONTROL STRUCTURES (ITERATION)

Dr. Shady Yehia Elmashad

SOUhwNE

7.

8.

9.

C++ Iterative Constructs

The for Repetition Structure

Examples Using the for Structure

The while Repetition Structure

Examples Using the while Structure
Formulating Algorithms (Counter-Controlled
Repetition)

Formulating Algorithms with Top-Down, Stepwise
Refinement

Nested control structures

Essentials of Counter-Controlled Repetition

10. The do/while Repetition Structure
11. The break and continue Statements
12. Structured-Programming Summary

1. C++ lterative Constructs

* There are three constructs:

> while statement
> for statement
» do-while statement

2. The for Repetition Structure

The general format when using £or loops is

for (initialization;

LoopContinuationTest; increment)

statement

Example:

for(int counter = 1; counter <= 10; counter++)

cout << counter << endl;

» Prints the integers from one to ten

No
semicolon
after last
statement

contoso

2. The for Repetition Structure

* Syntax
for (Forlnit ; ForExpression; PostExpression)

Action

* Example

for (int 1 = 0; 1 < 3; ++1i) {
cout < "1 is " <K<K 1 << endl;

Ev aluated once
at the beginning

of the for —p _
statements's Forlnit

execution

If FOorExpr is

true, Action is
executed \ e

After the Action
has completed, Action
the
PostExpression
iIs evaluated
PostEXx pr

After evaluating the /
PostExpression, the next

iteration of the loop starts

The ForExpr is
evaluated at the

start of each
iteration of the
loop

If FOrExpr is
false, program
execution —p
continues with
next statement

2. The for Repetition Structure

 For loops can usually be rewritten as while loops:
initialization;
while (loopContinuationTest) {
statement

increment;

* Initialization and increment as comma-separated lists
for (int 1 =0, 3 =0; Jj + 1 <= 10; j++, i++)
cout << j + 1 << endl;

contoso

3. Examples Using the for Structure

Sum the numbers from 0 to 10

#include <iostram.h>
void main ()

3. Examples Using the for Structure

Sum the even numbers from 0 to 100

#include <iostram.h>
void main ()

3. Examples Using the for Structure

Sum the odd numbers from 0 to 100

#include <iostram.h>
void main ()

3. Examples Using the for Structure

Printing characters depending on user entry

#include <iostram.h>
void main ()

-

4. The while Repetition Structure

Logical expression that determines Action to be iteratively
whether the action is to be executed ~ Performed until logical

\ expression is false

while (Expression) Action

4. The while Repetition Structure

While Semantics Expression is

evaluated at the

start of each
iteration of the
loop
If EXpression is @

true, Action is \ true false

executed If Expression is

false, program
— execution

continues with

next statement

Action

contoso

4. The while Repetition Structure

* Repetition structure

> Programmer specifies an action to be repeated while
some condition remains true

» Psuedocode
while there are more items on my shopping list
Purchase next item and cross it off my list
» while loop repeated until condition becomes false.

-Example
int product = 2;
while (product <= 1000)
product = 2 * product;

4. The while Repetition Structure

* Flowchart of while loop

oroduct <=

1000

true

product = 2 * product

5. Examples Using the while Structure

Printing characters depending on user entry

#include <iostram.h>
void main ()

{

intn,i=0:char ch;

5. Examples Using the while Structure

The summation of the numbers squared from 0 to 10

#include <iostram.h>
void main ()

5. Examples Using the while Structure

Factorial of a number

H#include <iostram.h>
void main ()

{

6. Formulating Algorithms

(Counter-Controlled Repetition)

* Counter-controlled repetition

» Loop repeated until counter reaches a certain value.
* Definite repetition

» Number of repetitions is known
* Example

A class of ten students took a quiz. The grades
(integers in the range 0 to 100) for this quiz are
available to you. Determine the class average on the
quiz.

6. Formulating Algorithms

(Counter-Controlled Repetition)

* Pseudocode for example:

Set total to zero
Set grade counter to one

While grade counter is less than or equal to ten
Input the next grade
Add the grade into the total
Add one to the grade counter

Set the class average to the total divided by ten
Print the class average

* Following is the C++ code for this example

contoso

A Outline
#include <iostream> v
using std: :cout; 1. Initialize Variables

using std::cin;
using std::endl;

2. Execute Loop
int main ()

{
int total,

3. Output results
gradeCounter,
grade,

average;,

total = 0;

gradeCounter = 1;

The counter gets incremented each
while (gradeCounter <= 10) { time the loop executes. Eventually, the
cout << "Enter grade: "; counter causes the loop to end.

cin >> grade;

total = total + grade;

gradeCounter = gradeCounter + 1;

average = total / 10;

cout << "Class average is " << average << endl;

return O0;

21

}
© 2000 Prentice Hall, Inc. All rights

Qutline

Program Output

Enter grade: 82
Enter grade: 94
Class average is 81

22

© 2000 Prentice Hall, Inc. All rights

7. Formulating Algorithms with Top-Down, Stepwise

Refinement (Sentinel-Controlled Repetition)

e Suppose the problem becomes:

» Develop a class-averaging program that will process an arbitrary
number of grades each time the program is run.

» Unknown number of students - how will the program know to
end?

e Sentinel value
» Indicates “end of data entry”
» Loop ends when sentinel inputted

» Sentinel value chosen so it cannot be confused with a regular
input (such as -1 in this case)

contoso

7. Formulating Algorithms with Top-Down, Stepwise

Refinement (Sentinel-Controlled Repetition)

* Top-down, stepwise refinement
» begin with a pseudocode representation of the top:
Determine the class average for the quiz
» Divide top into smaller tasks and list them in order:
Initialize variables
Input, sum and count the quiz grades
Calculate and print the class average

7. Formulating Algorithms with Top-Down,

Stepwise Refinement

* Many programs can be divided into three phases:

> Initialization
- Initializes the program variables

> Processing
- Inputs data values and adjusts program variables accordingly
» Termination

- Calculates and prints the final results.
- Helps the breakup of programs for top-down refinement.

* Refine the initialization phase from
Initialize variables
to
Initialize total to zero
Initialize counter to zero

contoso

7. Formulating Algorithms with Top-Down,

Stepwise Refinement

* Refine

Input, sum and count the quiz grades
to
Input the first grade (possibly the sentinel)
While the user has not as yet entered the sentinel
Add this grade into the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

e Refine

Calculate and print the class average
to
If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average
Else
Print “No grades were entered”

contoso

#include <iostream>

using std:
using std:
using std:

using std:

:cout;

:cin;

:endl;

tios;

#include <iomanip>

using std::setprecision;

using std::setiosflags;

int main()

{

int total,

gradeCounter,

grade;

double average;

total =

gradeCounter = 0;

cout << "Enter grade,

0;

cin >> grade;

while (grade '= -1) {

© £ZUUU rrentice Hall, InC. All rignts

<>

Data type double used to represent
decimal numbers.

1.

Qutline

Initialize Variables
2. Get user input

2.1 Perform Loop

27

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

total = total + grade;

cout << "Enter grade, -1 to end: ";

gradeCounter = gradeCounter + 1; A Outllne

cin >> grade;

} 3. Calculate Average

// termination phase .
if (gradeCountar != 0) { 3.1 Print Results
average = static cast< double >(total) / gradeCounter;
cout << "Class avefage is " << setprecision(2)
<< setiosfléags(ios::fixed | ios::showpoint)

<< average << endl;

[

© 2000 Prentice Hall, Inc. All rights

X /9 o - 3 I

static_cast<double>() - treats total asa
double temporarily.

ios: :showpoint) -stream

_ - _ ers wjth a fixed number of decimal
Required because dividing two integers truncates the

remainder.

Haorimal n ANt and trailinag zarac _ovaon if pUt
gradeCounter is an int, but it gets promoted to cision (2) - prints only two digits
double. mal point.

| - separates multi
Programs that use this must include

<iomanip>

28

8. Nested Control Structures

* Problem:

A college has a list of test results (1 = pass, 2 = fail) for 10
students. Write a program that analyzes the results. If
more than 8 students pass, print "Raise Tuition".

 We can see that

» The program must process 10 test results. A counter-
controlled loop will be used.

» Two counters can be used—one to count the number of
students who passed the exam and one to count the
number of students who failed the exam.

» Each test result is a number—eithera 1 ora 2. If the
numberis not a 1, we assume that it is a 2.

* Top level outline:
Analyze exam results and decide if tuition should be raised

contoso
v ¢

8. Nested Control Structures

e First Refinement:

Initialize variables

Input the ten quiz grades and count passes and
failures

Print a summary of the exam results and decide if
tuition should be raised

* Refine
Initialize variables
to
Initialize passes to zero

Initialize failures to zero
Initialize student counter to one

contoso

8. Nested Control Structures

- Refine

Input the ten quiz grades and count passes and failures
to

While student counter is less than or equal to ten
Input the next exam result

If the student passed

Add one to passes
Else
Add one to failures

Add one to student counter

e Refine

Print a summary of the exam results and decide if tuition should be rais
to

Print the number of passes

Print the number of failures

If more than eight students passed
Print “Raise tuition” M 1R a

10

11

12

13

14

15

16

17

18

19

20

21

22

23

// Fig. 2.11: £ig02 11l.cpp
// Analysis of examination results

#include <iostream>

using std: :cout;
using std::cin;

using std: :endl;

int main ()

{

// initialize variables in declarations

int passes = 0, // number of passes
failures = 0, // number of failures
studentCounter = 1, // student counter
result; // one exam result

// process 10 students; counter-controlled loop
while (studentCounter <= 10) {
cout << "Enter result (l=pass,2=fail): ";

cin >> result;

if (result == 1) // if/else nested in while

passes = passes + 1;

© 2000 Prentice Hall, Inc. All rights

A Outline
\Y

1. Initialize variables

2. Input data and
count passes/failures

32

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 }

else
failures = failures + 1;

studentCounter = studentCounter + 1;

// termination phase
cout << "Passed " << passes << endl;
cout << "Failed " << failures << endl;

if (passes > 8)
cout << "Raise tuition " << endl;

return O; // successful termination

© 2000 Prentice Hall, Inc. All rights

<>

33

Qutline

3. Print results

Program Output

8. Nested Control Structures

Accept 10 numbers from the user & print the max. one

#include <iostram.h>
void main ()

{

int num, largest =0 ;

contoso |
'S

8. Nested Control Structures
Multiplication Table of 5

#include <iostram.h>
void main ()

{

8. Nested Control Structures

Multiplication Table of n

#include <iostram.h>

void main () {

cout << “ Please enter a number: “;
cin>>n;

9. Essentials of Counter-Controlled

Repetition

* Counter-controlled repetition requires:

» The name of a control variable (or loop counter).
» The initial value of the control variable.

> The condition that tests for the final value of the control variable
(i.e., whether looping should continue).

» The increment (or decrement) by which the control variable is
modified each time through the loop.

* Example:
int counter =1; //initialization
while (counter <= 10) { //repetition
condition
cout << counter << endl;
++counter; //increment

contoso

9. Essentials of Counter-Controlled

Repetition

* The declaration

int counter = 1;

» Names counter

» Declares counter to be an integer

» Reserves space for counter in memory
» Sets counter to an initial value of 1

10. The do/while Repetition Structure

* The do/while repetition structure is similar to the while
structure,
» Condition for repetition tested after the body of the loop is

executed

* Syntax:

do {

statement (s) Q

} while (condition);
* Example (letting counter = 1): action (s)

do {

cout << counter << " ";

true

} while (++counter <= 10);
» This prints the integers from 1 to 10

* All actions are performed at least once.

condition

11. The break and continue Statements

 Break

» Causes immediate exit from a while, for,
do/while or switch structure

» Program execution continues with the first
statement after the structure

» Common uses of the break statement:
- Escape early from a loop
- Skip the remainder of a switch structure

11. The break and continue Statements

e Continue

» Skips the remaining statements in the body of
a while, for or do/while structure and

proceeds with the next iteration of the loop

»In while and do/while, the loop-

continuation test is evaluated immediately
after the continue statement is executed

»In the for structure, the increment
expression is executed, then the Iloop-
continuation test is evaluated

11. The break and continue Statements

#include <iostream.h>
Void main()

{

int sum =0, num;

// Allow the user to enter up to 10 numbers
for (int count=0; count < 10; ++count) {

11. The break and continue Statements

H#include <iostream.h>
void main ()

{

while (true) // infinite loop

11. The break and continue Statements

H#Hinclude <iostream.h>
void main ()

{

for (int count=0; count < =20; ++count) {

* This program prints all of the numbers from 0 to 20
that aren’t divisible by 4.

contoso

12. Structured-Programming Summary

e Structured programming

» Programs are easier to understand, test, debug and, modify.

* Rules for structured programming

» Only single-entry/single-exit control structures are used
» Rules:
1) Begin with the “simplest flowchart”.

2) Any rectangle (action) can be replaced by two rectangles
(actions) in sequence.

3) Any rectangle (action) can be replaced by any control

structure (sequence, if, if/else, switch, while, do/while or
for).

4) Rules 2 and 3 can be applied in any order and multiple
times.

contoso

12. Structured-Programming Summary

Representation of Rule 3 (replacing any rectangle with a control structure)

—
— Rule3 =
........................... ;O:
.....................)
Rule-3) / Rule3
_ @,
e
N

contoso

12. Structured-Programming Summary

* All programs can be broken down into

» Seqguence
» Selection

- if, if/else, or switch

- Any selection can be rewritten as an i f statement
» Repetition

- while,do/whileor for

- Any repetition structure can be rewritten as a
while statement

