
CHAPTER 2.2

CONTROL STRUCTURES (ITERATION)

Dr. Shady Yehia Elmashad

Outline

1. C++ Iterative Constructs
2. The for Repetition Structure
3. Examples Using the for Structure
4. The while Repetition Structure
5. Examples Using the while Structure
6. Formulating Algorithms (Counter-Controlled

Repetition)
7. Formulating Algorithms with Top-Down, Stepwise

Refinement
8. Nested control structures
9. Essentials of Counter-Controlled Repetition
10. The do/while Repetition Structure
11. The break and continue Statements
12. Structured-Programming Summary

1. C++ Iterative Constructs

• There are three constructs:

while statement

 for statement

do-while statement

2. The for Repetition Structure

The general format when using for loops is

for (initialization;

LoopContinuationTest; increment)

statement

Example:
for(int counter = 1; counter <= 10; counter++)

cout << counter << endl;

Prints the integers from one to ten No
semicolon
after last
statement

2. The for Repetition Structure

• Syntax
for (ForInit ; ForExpression; PostExpression)

Action

• Example
for (int i = 0; i < 3; ++i) {

cout << "i is " << i << endl;

}

ForExpr

Ac tion

true f alse

ForInit

PostEx pr

Evaluated once

at the beginning

of the for

statements's

execution
The ForExpr is

evaluated at the

start of each

iteration of the

loop

If ForExpr is

true, Action is

executed

After the Action

has completed,

the

PostExpression

is evaluated

If ForExpr is

false, program

execution

continues with

next statement

After ev aluating the

PostExpression, the next

iteration of the loop starts

2. The for Repetition Structure

• For loops can usually be rewritten as while loops:
initialization;

while (loopContinuationTest){

statement

increment;

}

• Initialization and increment as comma-separated lists
for (int i = 0, j = 0; j + i <= 10; j++, i++)

cout << j + i << endl;

3. Examples Using the for Structure

Sum the numbers from 0 to 10

#include <iostram.h>
void main ()
{
int sum = 0 ;

for (int i = 0; i < = 10; i++)
{
sum = sum + i ;
}

cout << “ Summation = “ << sum ;
}

Summation =

3. Examples Using the for Structure

Sum the even numbers from 0 to 100

Summation =

#include <iostram.h>
void main ()
{
int sum = 0 ;

for (int i = 0; i < = 100; i+=2)
{
sum = sum + i ;
}

cout << “ Summation = “ << sum ;
}

3. Examples Using the for Structure

Sum the odd numbers from 0 to 100

Summation =

#include <iostram.h>
void main ()
{
int sum = 0 ;

for (int i = 1; i < = 100; i+=2)
{
sum = sum + i ;
}

cout << “ Summation = “ << sum ;
}

3. Examples Using the for Structure

Printing characters depending on user entry

#include <iostram.h>
void main ()
{
int n ; char ch;
cout << “ Please enter the character: “ ;
cin >> ch ;
cout << “ Please enter the number of
repetition: “ ;
cin >> n ;

for (int i = 0; i < n ; i++)
cout << ch;

}

4. The while Repetition Structure

Logical expression that determines

whether the action is to be executed

while (Expression) Action

Action to be iteratively

performed until logical

expression is false

4. The while Repetition Structure

Ex pres sion

Ac tion

true f alse

Expression is

evaluated at the

start of each

iteration of the

loop

If Expression is

true, Action is

executed If Expression is

false, program

execution

continues with

next statement

While Semantics

4. The while Repetition Structure

• Repetition structure
 Programmer specifies an action to be repeated while

some condition remains true

 Psuedocode

while there are more items on my shopping list

Purchase next item and cross it off my list

 while loop repeated until condition becomes false.

• Example
int product = 2;

while (product <= 1000)

product = 2 * product;

4. The while Repetition Structure

• Flowchart of while loop

product <= 1000 product = 2 * product
true

false

5. Examples Using the while Structure

Printing characters depending on user entry

#include <iostram.h>
void main ()
{
int n, i = 0 ; char ch;
cout << “ Please enter the character: “ ;
cin >> ch ;
cout << “ Please enter the number of
repetition: “ ;
cin >> n ;

while (i < n) {
cout << ch ;
i ++ ;
}

}

5. Examples Using the while Structure

The summation of the numbers squared from 0 to 10

#include <iostram.h>
void main ()
{
int sq_sum = 0, x = 0, y ;

while (x < = 10) {
y = x * x ;
sq_sum = sq_sum + y ;
x ++ ;
}

cout << “The summation of the
numbers squared from 0 to 10 “ <<
sq_sum ;
}

5. Examples Using the while Structure

Factorial of a number

#include <iostram.h>
void main ()
{
int n, fact = 1 ;
cout << “ Please enter a number “ << endl ;
cin >> n ;

while (n > 0) {
fact = fact * n ;
n -- ;
}

cout << “ The factorial of your number is “
<< fact ;
}

6. Formulating Algorithms
(Counter-Controlled Repetition)

• Counter-controlled repetition

 Loop repeated until counter reaches a certain value.

• Definite repetition

 Number of repetitions is known

• Example

A class of ten students took a quiz. The grades
(integers in the range 0 to 100) for this quiz are
available to you. Determine the class average on the
quiz.

6. Formulating Algorithms
(Counter-Controlled Repetition)

• Pseudocode for example:
Set total to zero

Set grade counter to one

While grade counter is less than or equal to ten
Input the next grade
Add the grade into the total
Add one to the grade counter

Set the class average to the total divided by ten
Print the class average

• Following is the C++ code for this example

 2000 Prentice Hall, Inc. All rights
reserved.

Outline

21

1. Initialize Variables

2. Execute Loop

3. Output results

1 // Fig. 2.7: fig02_07.cpp

2 // Class average program with counter-controlled repetition

3 #include <iostream>

4

5 using std::cout;

6 using std::cin;

7 using std::endl;

8

9 int main()

10 {

11 int total, // sum of grades

12 gradeCounter, // number of grades entered

13 grade, // one grade

14 average; // average of grades

15

16 // initialization phase

17 total = 0; // clear total

18 gradeCounter = 1; // prepare to loop

19

20 // processing phase

21 while (gradeCounter <= 10) { // loop 10 times

22 cout << "Enter grade: "; // prompt for input

23 cin >> grade; // input grade

24 total = total + grade; // add grade to total

25 gradeCounter = gradeCounter + 1; // increment counter

26 }

27

28 // termination phase

29 average = total / 10; // integer division

30 cout << "Class average is " << average << endl;

31

32 return 0; // indicate program ended successfully

33 }

The counter gets incremented each
time the loop executes. Eventually, the
counter causes the loop to end.

 2000 Prentice Hall, Inc. All rights
reserved.

Outline

22

Program Output

Enter grade: 98

Enter grade: 76

Enter grade: 71

Enter grade: 87

Enter grade: 83

Enter grade: 90

Enter grade: 57

Enter grade: 79

Enter grade: 82

Enter grade: 94

Class average is 81

7. Formulating Algorithms with Top-Down, Stepwise
Refinement (Sentinel-Controlled Repetition)

• Suppose the problem becomes:
 Develop a class-averaging program that will process an arbitrary

number of grades each time the program is run.

 Unknown number of students - how will the program know to
end?

• Sentinel value
 Indicates “end of data entry”

 Loop ends when sentinel inputted

 Sentinel value chosen so it cannot be confused with a regular
input (such as -1 in this case)

7. Formulating Algorithms with Top-Down, Stepwise
Refinement (Sentinel-Controlled Repetition)

• Top-down, stepwise refinement

 begin with a pseudocode representation of the top:

Determine the class average for the quiz

 Divide top into smaller tasks and list them in order:

Initialize variables

Input, sum and count the quiz grades

Calculate and print the class average

7. Formulating Algorithms with Top-Down,
Stepwise Refinement

• Many programs can be divided into three phases:
 Initialization

- Initializes the program variables

 Processing
- Inputs data values and adjusts program variables accordingly

 Termination
- Calculates and prints the final results.

- Helps the breakup of programs for top-down refinement.

• Refine the initialization phase from
Initialize variables

to

Initialize total to zero

Initialize counter to zero

7. Formulating Algorithms with Top-Down,
Stepwise Refinement

• Refine
Input, sum and count the quiz grades

to

Input the first grade (possibly the sentinel)

While the user has not as yet entered the sentinel

Add this grade into the running total

Add one to the grade counter

Input the next grade (possibly the sentinel)

• Refine
Calculate and print the class average

to

If the counter is not equal to zero

Set the average to the total divided by the counter

Print the average

Else

Print “No grades were entered”

 2000 Prentice Hall, Inc. All rights
reserved.

Outline

27

1. Initialize Variables

2. Get user input

2.1 Perform Loop

1 // Fig. 2.9: fig02_09.cpp

2 // Class average program with sentinel-controlled repetition.

3 #include <iostream>

4

5 using std::cout;

6 using std::cin;

7 using std::endl;

8 using std::ios;

9

10 #include <iomanip>

11

12 using std::setprecision;

13 using std::setiosflags;

14

15 int main()

16 {

17 int total, // sum of grades

18 gradeCounter, // number of grades entered

19 grade; // one grade

20 double average; // number with decimal point for average

21

22 // initialization phase

23 total = 0;

24 gradeCounter = 0;

25

26 // processing phase

27 cout << "Enter grade, -1 to end: ";

28 cin >> grade;

29

30 while (grade != -1) {

Data type double used to represent

decimal numbers.

 2000 Prentice Hall, Inc. All rights
reserved.

Outline

28

3. Calculate Average

3.1 Print Results

Program Output

31 total = total + grade;

32 gradeCounter = gradeCounter + 1;

33 cout << "Enter grade, -1 to end: ";

34 cin >> grade;

35 }

36

37 // termination phase

38 if (gradeCounter != 0) {

39 average = static_cast< double >(total) / gradeCounter;

40 cout << "Class average is " << setprecision(2)

41 << setiosflags(ios::fixed | ios::showpoint)

42 << average << endl;

43 }

44 else

45 cout << "No grades were entered" << endl;

46

47 return 0; // indicate program ended successfully

48 }

Enter grade, -1 to end: 75

Enter grade, -1 to end: 94

Enter grade, -1 to end: 97

Enter grade, -1 to end: 88

Enter grade, -1 to end: 70

Enter grade, -1 to end: 64

Enter grade, -1 to end: 83

Enter grade, -1 to end: 89

Enter grade, -1 to end: -1

Class average is 82.50

setiosflags(ios::fixed | ios::showpoint) - stream
manipulator

ios::fixed - output numbers with a fixed number of decimal
points.

ios::showpoint - forces decimal point and trailing zeros, even if
unnecessary: 66 printed as 66.00

| - separates multiple option.

setprecision(2) - prints only two digits
past decimal point.

Programs that use this must include
<iomanip>

static_cast<double>() - treats total as a
double temporarily.

Required because dividing two integers truncates the
remainder.

gradeCounter is an int, but it gets promoted to
double.

8. Nested Control Structures

• Problem:
A college has a list of test results (1 = pass, 2 = fail) for 10
students. Write a program that analyzes the results. If
more than 8 students pass, print "Raise Tuition".

• We can see that
 The program must process 10 test results. A counter-

controlled loop will be used.

 Two counters can be used—one to count the number of
students who passed the exam and one to count the
number of students who failed the exam.

 Each test result is a number—either a 1 or a 2. If the
number is not a 1, we assume that it is a 2.

• Top level outline:
Analyze exam results and decide if tuition should be raised

8. Nested Control Structures

• First Refinement:
Initialize variables

Input the ten quiz grades and count passes and
failures

Print a summary of the exam results and decide if
tuition should be raised

• Refine
Initialize variables

to

Initialize passes to zero

Initialize failures to zero

Initialize student counter to one

8. Nested Control Structures

• Refine
Input the ten quiz grades and count passes and failures

to

While student counter is less than or equal to ten
Input the next exam result

If the student passed

Add one to passes
Else

Add one to failures

Add one to student counter

• Refine
Print a summary of the exam results and decide if tuition should be raised

to

Print the number of passes

Print the number of failures

If more than eight students passed
Print “Raise tuition”

 2000 Prentice Hall, Inc. All rights
reserved.

Outline

32

1. Initialize variables

2. Input data and

count passes/failures

1 // Fig. 2.11: fig02_11.cpp

2 // Analysis of examination results

3 #include <iostream>

4

5 using std::cout;

6 using std::cin;

7 using std::endl;

8

9 int main()

10 {

11 // initialize variables in declarations

12 int passes = 0, // number of passes

13 failures = 0, // number of failures

14 studentCounter = 1, // student counter

15 result; // one exam result

16

17 // process 10 students; counter-controlled loop

18 while (studentCounter <= 10) {

19 cout << "Enter result (1=pass,2=fail): ";

20 cin >> result;

21

22 if (result == 1) // if/else nested in while

23 passes = passes + 1;

 2000 Prentice Hall, Inc. All rights
reserved.

Outline

33

3. Print results

Program Output

24 else

25 failures = failures + 1;

26

27 studentCounter = studentCounter + 1;

28 }

29

30 // termination phase

31 cout << "Passed " << passes << endl;

32 cout << "Failed " << failures << endl;

33

34 if (passes > 8)

35 cout << "Raise tuition " << endl;

36

37 return 0; // successful termination

38 }

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 2

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 1

Passed 9

Failed 1

Raise tuition

8. Nested Control Structures
Accept 10 numbers from the user & print the max. one

#include <iostram.h>
void main ()
{
int num, largest = 0 ;

for (int i = 0; i < 10; i ++) {
cout << “ Enter a number: “ ;
cin >> num ;

if (num > largest) {
largest = num ;
}

}
cout << “ The largest number is “ << largest
<< endl ;
}

8. Nested Control Structures

Multiplication Table of 5

#include <iostram.h>
void main ()
{
cout << “ \ t 1 \ t 2 \ t 3 \ t 4 \ t 5 “
; << endl ;

for (int i = 1 ; i < = 5 ; i ++) {
cout << i ;
cout << “ \ t “ ;

for (int j = 1 ; j < = 5 ; j ++) {
cout << i * j << “ \ t “ << “ | “ ;
}

cout << endl;
}

}

8. Nested Control Structures

Multiplication Table of n

#include <iostram.h>
void main () {
cout << “ Please enter a number: “ ;
cin >> n ;

for (int i = 1 ; i < = n ; i ++) {
cout << i ;
cout << “ \ t “ ;
}

cout << endl ;
for (int j = 1 ; j < = n ; j ++) {
cout << i ;
cout << “ \ t “ ;

for (int k = 1 ; k < = n ; k ++) {
cout << j * k << “ \ t “ << “ | “ ;
}

cout << endl;
}

}

9. Essentials of Counter-Controlled
Repetition

• Counter-controlled repetition requires:
 The name of a control variable (or loop counter).

 The initial value of the control variable.

 The condition that tests for the final value of the control variable
(i.e., whether looping should continue).

 The increment (or decrement) by which the control variable is
modified each time through the loop.

• Example:
int counter =1; //initialization

while (counter <= 10){ //repetition

condition

cout << counter << endl;

++counter; //increment

}

9. Essentials of Counter-Controlled
Repetition

• The declaration
int counter = 1;

 Names counter

 Declares counter to be an integer

 Reserves space for counter in memory

 Sets counter to an initial value of 1

10. The do/while Repetition Structure

• The do/while repetition structure is similar to the while
structure,
 Condition for repetition tested after the body of the loop is

executed

• Syntax:
do {

statement(s)

} while (condition);

• Example (letting counter = 1):
do {

cout << counter << " ";

} while (++counter <= 10);

 This prints the integers from 1 to 10

• All actions are performed at least once.

true

false

action(s)

condition

11. The break and continue Statements

• Break

 Causes immediate exit from a while, for,
do/while or switch structure

 Program execution continues with the first
statement after the structure

 Common uses of the break statement:

- Escape early from a loop

- Skip the remainder of a switch structure

11. The break and continue Statements

• Continue

 Skips the remaining statements in the body of
a while, for or do/while structure and
proceeds with the next iteration of the loop

 In while and do/while, the loop-
continuation test is evaluated immediately
after the continue statement is executed

 In the for structure, the increment
expression is executed, then the loop-
continuation test is evaluated

11. The break and continue Statements

#include <iostream.h>
Void main()
{

int sum = 0, num;

// Allow the user to enter up to 10 numbers
for (int count=0; count < 10; ++count) {

cout << "Enter a number to add, or 0 to exit: ";
cin >> num;

// exit loop if user enters 0
if (num == 0)

break;

// otherwise add number to our sum
sum += num;

}
cout << "The sum of all the numbers you entered is " << sum << "\n";

}

11. The break and continue Statements

#include <iostream.h>
void main ()
{

while (true) // infinite loop
{

cout << "Enter 0 to exit or anything else to continue: ";
int num;
cin >> num;

// exit loop if user enters 0
if (num == 0)

break;
}

cout << "We're out!\n";
}

11. The break and continue Statements

#include <iostream.h>
void main ()
{

for (int count=0; count < =20; ++count) {
// if the number is divisible by 4, skip this iteration
if ((count % 4) == 0)

continue;

// If the number is not divisible by 4, keep going
cout << count << endl;

}
}

• This program prints all of the numbers from 0 to 20
that aren’t divisible by 4.

12. Structured-Programming Summary

• Structured programming
 Programs are easier to understand, test, debug and, modify.

• Rules for structured programming
 Only single-entry/single-exit control structures are used

 Rules:

1) Begin with the “simplest flowchart”.

2) Any rectangle (action) can be replaced by two rectangles
(actions) in sequence.

3) Any rectangle (action) can be replaced by any control
structure (sequence, if, if/else, switch, while, do/while or
for).

4) Rules 2 and 3 can be applied in any order and multiple
times.

12. Structured-Programming Summary

Representation of Rule 3 (replacing any rectangle with a control structure)

Rule 3

Rule 3Rule 3

12. Structured-Programming Summary

• All programs can be broken down into
 Sequence

 Selection

- if, if/else, or switch

- Any selection can be rewritten as an if statement

 Repetition

- while, do/while or for

- Any repetition structure can be rewritten as a
while statement

